Skip to main content

Topband Vertical Antenna

It's not a great vertical by any standards, but on the plus side, its cheap, fits in a small garden, could be considered a temporary structure, is dual band by just removing the bottom loading coil and capacitor and.... just add more pwr for more erp. The total height is 43 ft - 10m fishing pole up 3 m off the ground, attached to a 27ft ex - army telescopic mast. Centre loading coil is just above the main mast at about 30 ft - 110 turns of 2.5mm square wire on a piece of waste pipe. This matches the antenna without further components at the CW end of 80m. The addition of a further series loading coil and 1000 pf cap at the base matches it on 160m. Currently with just 4 radials the match is 1:1.4 between 1820kHz and 1840kHz - best DX to date is eastern US with CW and 400W.

Comments

Popular posts from this blog

Digital Bandpass Filter FIR design - Python

The python code generates the Finite Impulse Response (FIR) filter coefficients for a lowpass filter (LPF) at 10 (Hz) cut off using firwin from scipy.  A highpass filter is then created by subtracting the lowpass filter output(s) from the output of an allpass filter. To do this the coefficients of the LPF are multiplied by -1 and 1 added to the centre tap (to create the allpass filter with subtraction). A second LPF is then created with a cutoff at 15 (Hz) and the bandpass filter formed by addition of the LPF and HPF coefficients. The program also generates a test sine wave of a given amplitude and power and to this noise from a Normal distribution is added.  The graph below shows the signal and nois, and the signal (green) after filtering. The input snr is approximately 3dB. The frequency response below shows the passband centered on 12.5 (Hz), the Nyquist frequency is 50 (Hz). from numpy import cos, sin, pi, absolute, arange from numpy.random import normal fr...

GNU Radio Waterfall and CW Filter

The following GNU radio application adds a waterfall spectrogram to the previous CW filter program. The plot show 4 CW signals in the audio band (lower sideband) at 7023 kHz. The 700Hz signal is filtered and output to the laptop headphones by the CW bandpass filter. The frequency display is shown after the script which is as follows: #!/usr/bin/env python from gnuradio import gr from gnuradio import audio from lpf_bpf_class import Bandpass from gnuradio.qtgui import qtgui from PyQt4 import QtGui import sys, sip     class cw_filter(gr.top_block):     def __init__(self):         gr.top_block.__init__(self)           sample_rate = 44100         out_rate = 8000         kaiser = Bandpass()         cw_flr = gr.fir_filter_fff(1, kaiser.bpftaps)         decimate = int...

QUISK SDR 40 metre RX

To test the previous GNU radio apps and evaluate the linux SDR QUISK software, the following 7MHz SDR was quickly assembled from available parts.  The heart of the hardware is the modulator section of a Marconi QPSK modem using Watkins Johnson M6E mixers with a 90 deg phase shift circuit modified for the xtal frequency of 7035kHz. Using the Softrock .quisk_conf.py file for QUISK with: fixed_vfo_freq = 7035000        sample_rate = 96000 The following daytime spectrograph was obtained on 40 metres. The SDR hardware (90% not used, including the 741 or TL081 op amps as they were noisy + insufficient gain-BW). The PC was a Toshiba Satellite L650 laptop with Ubuntu 11.10 OS.